
Quizzy - Analisi e Progettazione

Università degli studi di Bergamo
Ingegneria Informatica

Arnoldi Elisa Matr. 1080572
Colpani Filippo Matr. 1078874
Foglieni Luca Matr. 1081399

Gennaio 2024

1

Indice

1 Introduzione 3
1.1 Termini e definizioni . 3

2 Analisi dei Requisiti 4
2.1 Specifica dei requisiti . 4
2.2 Classificazione MoSCoW . 5

3 UML 6
3.1 Diagramma dei casi d’uso . 6
3.2 Diagramma delle classi . 6
3.3 Diagramma di stato . 7

3.3.1 Oggetto Partita . 7
3.4 Diagramma di sequenza . 8

3.4.1 Creazione Quiz . 8
3.4.2 Creazione e svolgimento Partita . 9

3.5 Diagramma delle attività . 10
3.5.1 Creazione e svolgimento Partita . 10

4 Software Architecture 11
4.1 Database Layer . 11
4.2 Logic Layer . 11
4.3 UI Layer . 11

5 Software Design 12
5.1 Diagramma dei componenti . 12
5.2 Design pattern utilizzati . 13
5.3 Analisi dei moduli . 13

6 Software Testing 14

7 Manutenzione 15

2

1 Introduzione

Il presente documento si propone di esplorare in profondità l’analisi e la progettazione di Quizzy,
integrando gli standard UML per rappresentare in modo chiaro e conciso gli elementi che compongono
il sistema e la realtà analizzata. Saranno fornite dettagliate descrizioni delle componenti chiave, delle
relazioni e delle modalità di interazione tra i diversi moduli. L’obiettivo è fornire una visione esaustiva
delle scelte di progettazione e delle strategie implementative che guidano lo sviluppo di Quizzy.

1.1 Termini e definizioni

• Quiz: insieme di domande di vario tipo

• Partita: istanza giocabile di un quiz

• Docente: classe di utenti del sistema che amministrano quiz e partite

• Studente: classe di utenti che partecipano ad una partita

3

2 Analisi dei Requisiti

2.1 Specifica dei requisiti

I requisiti del progetto sono stati estratti inizialmente dopo un paio di incontri per stabilire le linee
guida del progetto e i comportamenti basilari che ci si aspettava dall’applicazione. Successivamente e
altri più particolari in fase di sviluppo. In particolare:

1. Il docente che utilizza l’applicazione deve essere in grado in ogni momento di poter creare,
modificare ed eliminare nuovi quiz, una volta fatto accesso al suo account personale.

(a) L’account del docente in fase di registrazione è costituito da una email, nome e password,
tutti necessari, dove l’univocità è data dall’email.

(b) Il docente deve essere in grado di accedere in ogni momento alla sua sezione quiz e poter
creare nuovi quiz.

(c) Il docente deve essere in grado di poter far partire in ogni momento il quiz da esso desiderato
dalla sua area personale, accessibile dagli studenti tramite PIN.

2. I quiz possono essere costituiti da un numero variabile di domande, in particolare:

(a) I quiz possono avere due tipologie di domande, a risposta multipla costituita da 4 risposte,
oppure a risposta vera o falso, con risposte fisse: “Vero” o “Falso”.

(b) Solo una delle possibili risposte è corretta.

(c) Le domande possono essere create nella sezione apposita dell’applicazione e devono essere
confermate ogni volta prima di passare alla creazione della successiva

(d) Ogni domanda può essere eliminata, in caso di errore, sia prima che dopo la conferma di
salvataggio della domanda.

(e) Una volta eseguita la creazione delle domande per uscire dalla schermata di creazione e
effettivamente eseguire il quiz, bisogna confermare tutti i dati inseriti nella loro interezza,
tramite il pulsante “Confirm”.

3. Per procedere all’avvio dei quiz bisogna accedere alla sezione “My Quiz” dell’area personale
del docente, cliccando sul pulsante “Start” presente su ogni quiz nell’elenco della schermata
principale.

(a) Per accedere all’area personale è necessario solo fare accesso all’applicazione che può essere
utilizzata su ogni dispositivo.

(b) Bisogna essere connessi per l’effettivo uso ad una rete locale.

(c) Non sono richieste particolari specifiche hardware per l’utilizzo dell’applicazione

4. All’avvio del quiz il docente dovrà presentare lo schermo ai propri studenti, in particolare:

(a) Sullo schermo del docente verrà presentato un pin a 6 cifre che gli studenti dovranno inserire
nella schermata iniziale, una volta fatto accesso a Quizzy, per fare accesso alla partita avviata
dal docente.

(b) Gli studenti possono fare accesso alla partita da qualsiasi dispositivo, l’importante è che
siano collegati alla stessa rete locale del docente.

(c) Una volta entrati nella partita gli studenti dovranno scegliere un nome e un avatar a scelta
dall’elenco, in modo da identificarsi.

(d) Scelto l’avatar e il nome, gli studenti dovranno attendere che il docente faccia l’avvio della
partita, nell’attesa, sullo schermo del docente verrà visualizzato l’elenco delle persone nella
partita con relativo nome e avatar.

(e) Non c’è limite al numero di partecipanti al quiz

5. Una volta iniziata la partita verranno visualizzate le domande:

4

(a) Sullo schermo del docente verrà visualizzata la domanda

(b) Sugli schermi degli studenti, in base alla loro grandezza, verranno visualizzate sia le domande
che la risposta. Invece se lo studente utilizza uno smartphone, a quel punto verranno
visualizzate solo le possibili opzioni e al posto dell’effettiva risposta, verranno visualizzati
dei simboli con sfondi colorati che combaciano a quelli delle risposte proiettate dal docente.

(c) Gli studenti hanno un tempo limite per rispondere alla domande di un minuto.

6. Dopo ogni domanda viene visualizzato il risultato della risposta.

(a) In modo automatico allo scadere del tempo limite imposto viene visualizzato singolarmente
dagli studenti l’esito della loro risposta

(b) In base alla correttezza della domanda e alla velocità della risposta viene attribuito un
punteggio.

(c) Sullo schermo del docente si può invece visualizzare la classifica provvisoria

7. Al termine del quiz gli studenti devono essere in grado di vedere la classifica finale

(a) Verranno visualizzati sullo schermo del professore i tre più bravi giocatori della partita.

(b) La visualizzazione è costituita da un’animazione dove viene visualizzato il nome, il punteggio
e l’avatar del personaggi sopra specificati.

8. Clonare quiz esistenti
Clonare quiz esistenti consente ai docenti di clonare un quiz già esistente, precedentemente creato
da loro o da un altro professore, per poi modificarlo nel caso lo si desideri.

9. Aggiungere immagini alle domande del quiz
Per arricchire l’esperienza è possibile aggiungere un’immagine per domanda. Questo permette al
professore di fare una domanda specifica su una specifica immagine a cui gli studenti dovranno
rispondere.

10. Creazione di domande con numero di risposta a scelta.
A discrezione del docente, si possono inserire dalle 2 alle 4 risposte per ogni domanda.

11. Modalità di presentazione offline tramite app
I quiz sono scaricabili localmente dal professore tramite l’app Quizzy per Windows, Linux MacOS,
Android ed iOS. Nel caso in cui ci si trovi in una situazione in cui la connessione non è sufficiente
per un’esperienza ottimale, il professore potrà presentare i quiz scaricati localmente nell’app in
modo da poter comunque utilizzare le domande per una lezione interattiva con gli studenti.

2.2 Classificazione MoSCoW

Must Have Should Have Could Have Won’t Have
1 4.a, 4.e 4.c 8
2 5.c 7.b 9
3 6 10

4.b, 4.d 7.a 11
5.a, 5.b

5

3 UML

3.1 Diagramma dei casi d’uso

3.2 Diagramma delle classi

6

3.3 Diagramma di stato

3.3.1 Oggetto Partita

7

3.4 Diagramma di sequenza

3.4.1 Creazione Quiz

8

3.4.2 Creazione e svolgimento Partita

9

3.5 Diagramma delle attività

3.5.1 Creazione e svolgimento Partita

10

4 Software Architecture

L’architettura del software realizzato è suddivisa in 3 layer: Database Layer, Logic Layer, UI Layer,
ogni layer espone funzionalità al layer superiore e sfrutta le funzionalità di quello inferiore.

4.1 Database Layer

Questo layer gestisce le transazioni con il database fisico. Espone al layer superiore le classi model
per la gestione persistente dei dati, rendendo trasparente l’accesso alla base di dati. Viene suddiviso
in due componenti principali: il DSL Code Generator che gestisce la connessione e lo scambio di dati
con il database, classi Models che rappresentano gli oggetti del sistema.

4.2 Logic Layer

Questo layer gestisce la logica di business del sistema, è suddiviso in due componenti principali: le
classi Manager, per la gestione delle logiche di business delle classi Models del Database Layer, ed
il Match Server Service, che instanzia e gestisce il microservizio per la gestione in tempo reale della
partita; in questo modo sarà possibile una migliore scalabilità futura del componente.

4.3 UI Layer

Questo layer gestisce le interazioni con gli utenti ed espone i servizi del Logic Layer mediante Web
UI, e svolge la funzione di Wrapper del Match Server Service, nello specifico le socket locali vengono
esposte dal componente Web Socket che gestisce le interazioni in tempo reale.

11

5 Software Design

5.1 Diagramma dei componenti

12

5.2 Design pattern utilizzati

Il design pattern delWrapper è stato utilizzato per le classiModels dato che la libreria JOOQ, utilizzata
per le funzionalità di DSL e generazione del codice, crea classi che rappresentano i record delle tabelle è
stato necessario incapsulare tali oggetti in classi che ne gestissero i controlli nonché la persistenza delle
modifiche, limitando la modifica degli attributi che altrimenti avrebbero minato l’integrità del sistema.
Questo pattern è stato anche applicato alle classi del componete Match Server Service, infatti i client
che comunicano a livello locale con il servizio del server sono stati incapsulati in una socket web cos̀ı
da rendere il servizio indipendente dalla macchina su cui viene eseguito favorendo l’interoperabilità del
servizio. in questo modo l’utente integrità con il sistema mediante un ristretto numero di operazioni
utilizzando il protocollo delle websocket.
Il secondo design pattern utilizzato è la Factory, per gestire la creazione di domande di diverso tipo, co-
me i vero o falso o quelle a risposta multipla. Essendo la classe it.quizzy.databaselayer.models.Domanda
la generalizzazione sotto forma di classe astratta di tutte le classi di domande, la classe DomandeFacto-
ry consiste in un metodo statico che mediante un parametro enumerativo definisce il tipo di domanda
richiesto e ritorna l’oggetto specificato.

5.3 Analisi dei moduli

Per valutare la qualità della progettazione del software sono state calcolate le seguenti metriche, me-
diante l’ausilio del software JDepend, suddivise per pacchetto. Nella seguente tabella sono state ripor-
tate le metriche principali adottate per valutare la qualità del design del software, come si può notare
l’astrattezza complessiva è minima, possibili refactor potrebbero includere il migliorare l’astrazione di
alcune classi. Inoltre è possibile notare come nei layer esterni l’intabilità sia maggiore rispetto al layer
logico.

Package Afferent Couplings Efferent Couplings Abstractness Instability
it.quizzy.databaselayer 0 3 0 1
it.quizzy.databaselayer.exceptions 5 0 0 0
it.quizzy.databaselayer.models 8 6 0.2 0.43
it.quizzy.databaselayer.models.domande 4 8 0 0.67
it.quizzy.databaselayer.util 4 2 0 0.33
it.quizzy.logiclayer.factory 1 3 0 0.75
it.quizzy.logiclayer.manager 4 8 0 0.67
it.quizzy.logiclayer.server 3 3 0.29 0.5
it.quizzy.uilayer.launch 0 5 0 1
it.quizzy.uilayer.websocket 0 4 0 1

Per una migliore comprensione delle dipendenze e l’accoppiamento tra moduli è stato anche utilizzato
il tool https://github.com/glato/emerge, per generare un grafo delle dipendenze interattivo.

13

Figura 1: Emerge dependency graph

6 Software Testing

La fase di testing, dato il metodo di sviluppo adottato, è stata continua a ha guidato buona parte
dell’implementazione dei layer. Nello specifico per il Database Layer sono stati realizzati test JUnit
per verificare il corretto uso del database e la persistenza degli oggetti, nonché l’integrità dei dati.
Per il Logic Layer sono state testate le classi manager con test Junit in grado di verificare il corretto
comportamento e logica di business relativi. In fine per lo UI Layer sono stati adottati test di natura
manuale per la validazione dei requisiti e la verifica del corretto funzionamento del sistema.
Per valutare la qualità dei test è stato utilizzato il tool di Eclipse Coverage, di seguito sono riportati i
risultati della copertura dei test JUnit

14

7 Manutenzione

Adottando un metodo di sviluppo agile le attività di manutenzione e di adattamento del software sono
risultate implicite e ben integrate con il processo di sviluppo. Sono state svolte diverse attività di
refactoring, tra le principali:

• Utilizzo del Factory design pattern:
Per migliorare a manutenibilità del codice relativo alla creazione e la modifica dei quiz, si è deciso
di applicare il design pattern Factory cos̀ı da fornire un’interfaccia unificata per la creazione di
domande, permettendo alle sottoclassi di decidere quali tipi di oggetti creare. Questo porta a
una maggiore flessibilità nel codice, in quanto consente di aggiungere nuovi tipi di oggetti senza
modificare l’intero codice. Il risultato è un approccio strutturato alla creazione degli oggetti,
contribuendo a rendere il codice più flessibile, estendibile, mantenibile e coeso.

• Aggiunta di un pin per la partita:
In seguito alla necessità di utilizzare un pin per la registrazione di un utente ad una partita è stato
modificato il database, aggiungendo la relativa colonna nella tabella partite. Successivamente
mediante la libreria JOOQ sono state ri mappate le classi delle tabelle del database, sono stati
modificati i test per verificare le funzionalità richieste, come la generazione del pin casuale e sono
state riscritte le classi Models coinvolte cos̀ı da passare i test JUnit. In fine sono state propagate
le modifiche a layer superiori.

• Aggiunta immagine avatar:
In seguito alla necessità degli utenti di poter selezionare un immagine per l’avatar è stato modifi-
cato il database, aggiungendo la relativa colonna nella tabella utente. Successivamente mediante
la libreria JOOQ sono state ri mappate le classi delle tabelle del database, sono stati modificati
i test per verificare le funzionalità richieste, sono state riscritte le classi Models coinvolte cos̀ı da
passare i test JUnit. In fine sono state propagate le modifiche a layer superiori.

15

